Sains Malaysiana 53(10)(2024): 3511-3520
http://doi.org/10.17576/jsm-2024-5310-23
Enhancing Indoor Photovoltaic
Performance of Inverted Type Organic Solar Cell by Controlling Photoactive
Layer Solution Concentration
(Meningkatkan Prestasi Fotovoltaik Dalaman Sel Suria Organik Jenis Terbalik dengan Mengawal Kepekatan Larutan Lapisan Fotoaktif)
MOHAMED NAFEER WAJIDH1,
NOUR ATTALLAH ISSA1, KAM SHENG LAU1, SIN TEE TAN2,
CHIN HUA CHIA1, MUSLIZAINUN MUSTAPHA1,
MOHAMMAD HAFIZUDDIN HJ JUMALI1 & CHI CHIN YAP1,*
1Department of Applied Physics, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,
Malaysia
Received: 1 April 2024/Accepted: 27 August 2024
Abstract
With the
development of various low-power indoor electronic devices, indoor
photovoltaics, particularly organic solar cells (OSCs) have attracted a
lot of interest in recent years. Increasing the light absorption and
suppressing the leakage current are pivotal to improve the indoor photovoltaic performance of OSCs. In this study, the carbon quantum dots
(CQDs)-incorporated photoactive layer solution concentration was
varied to improve the photovoltaic performance under 1-sun and indoor white
LED illumination. The
photoactive layer was composed of (6,6)-phenyl-C61-butyric acid methyl ester)
(PCBM) as the acceptor and poly(3-hexylthiophene) (P3HT) as the donor.
The ZnO electron transport layer was deposited on fluorine-doped tin oxide
(FTO)-coated glass substrates using a spin coating technique. The photoactive
layers with different solution concentrations were spin coated on top of the ZnO layer. For device completion, silver anode was
thermally evaporated. It is interesting to find that the optimum solution
concentration obtained under white LED illumination is larger than that under
1-sun illumination. The maximum power conversion efficiency (PCE) of 0.95% was obtained under 1-sun
illumination for device with the solution concentration of 36 mg/mL, whereas,
under white LED illumination, the highest PCE of 3.59% was obtained for the
device with solution concentration of 48 mg/mL.The discrepancy is ascribed to
the higher light absorption of thicker photoactive layer and less significant charge recombination
loss under weak light intensity. This study highlights the importance of using
different optimization strategies to improve the photovoltaic performance of
OSCs for outdoor and indoor applications.
Keywords: Carbon quantum dots; charge recombination;
leakage current; light absorption; thickness
Abstrak
Dengan pembangunan pelbagai
peranti elektronik dalaman berkuasa rendah, fotovoltaik dalaman, terutamanya sel suria organik (OSC) telah menarik
banyak perhatian sejak beberapa tahun kebelakangan ini. Peningkatan penyerapan cahaya dan pengurangan kebocoran arus adalah penting untuk
meningkatkan prestasi fotovoltaik dalaman OSC. Dalam kajian ini,
kepekatan larutan lapisan fotoaktif yang digabungkan titik kuantum karbon
(CQDs) telah diubah untuk meningkatkan prestasi fotovoltaik di bawah
pencahayaan 1-matahari dan LED putih dalaman. Lapisan fotoaktif terdiri
daripada (6,6)-fenil-C61 butrik
asid metal ester (PCBM)
sebagai penerima dan poli (3-heksilthiofena) (P3HT) sebagai penderma.
Lapisan pengangkut elektron ZnO dimendapkan pada substrat kaca
bersalut oksida timah terdop fluorin (FTO) menggunakan teknik salutan
putaran. Lapisan fotoaktif dengan kepekatan larutan yang berbeza disalut di
atas lapisan ZnO. Untuk menghasilkan peranti, anod perak disejat
secara terma. Adalah menarik untuk mendapati bahawa kepekatan larutan optimum
yang diperoleh di bawah pencahayaan LED putih adalah lebih besar daripada di
bawah pencahayaan 1-matahari. Kecekapan penukaran kuasa (PCE) maksimum 0.95% diperoleh di bawah pencahayaan
1-matahari untuk peranti dengan kepekatan larutan 36 mg/mL, manakala, di bawah
pencahayaan LED putih, PCE tertinggi sebanyak 3.59% diperoleh untuk peranti
dengan kepekatan larutan 48 mg/mL. Percanggahan itu adalah disebabkan oleh
penyerapan cahaya yang lebih tinggi bagi lapisan fotoaktif yang lebih tebal dan
kehilangan penggabungan semula cas yang kurang ketara di bawah keamatan cahaya
yang lemah. Kajian ini menonjolkan kepentingan menggunakan
strategi pengoptimuman yang berbeza untuk meningkatkan prestasi fotovoltaik OSC
untuk aplikasi luaran dan dalaman.
Kata kunci: Arus bocor; ketebalan; penggabungan semula
cas; penyerapan cahaya; titik kuantum karbon
References
Alkhalayfeh, M.A., Abdul Aziz, A.,
Pakhuruddin, M.Z., Katubi, K.M.M. & Ahmadi, N. 2022. Recent development of indoor organic photovoltaics. Physica Status Solidi (A) Applications and
Materials Science 219: 2100639.
Baek, W.H., Yang, H., Yoon, T.S.,
Kang, C.J., Lee, H.H. & Kim, Y.S. 2009. Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells. Solar
Energy Materials and Solar Cells 93(8): 1263-1267.
Farooq, W., Khan, A.D., Khan, A.D. & Noman, M.
2020. Enhancing the power conversion
efficiency of organic solar cells. Optik 208:
164093.
Hazar Apaydin, D., Esra Yildiz,
D., Cirpan, A. & Toppare,
L. 2013. Optimizing the organic solar cell efficiency:
Role of the active layer thickness. Solar Energy Materials and Solar Cells 113: 100-105.
Ho, C.S., Huang, E.L., Hsu,
W.C., Lee, C.S., Lai, Y.N., Yao, E.P. & Wang, C.W. 2012. Thermal effect on
polymer solar cells with active layer concentrations of 3-5 wt%. Synthetic Metals 162(13-14): 1164-1168.
Issa, N.A., Yap, C.C., Tan,
S.T., Hong, K.J., Lau, K.S., Khairulaman, F.L., Chia,
C.H., Jumali, M.H.H. & Chong, K-K. 2022.
Photovoltaic performance improvement of organic solar cell with ZnO nanorod arrays as electron transport layer using carbon
quantum dots-incorporated photoactive layer. Optical Materials 132:
112876.
Jahandar, M., Kim, S. &
Lim, D.C. 2021. Indoor organic photovoltaics for self-sustaining IoT devices:
Progress, challenges and practicalization. ChemSusChem 14: 3449-3474.
Kang, M.H., Heo, D.K., Kim,
D.H., Lee, M., Ryu, K., Kim, Y.H. & Yun, C. 2019. Fabrication of
spray-coated semitransparent organic solar cells. IEEE Journal of the
Electron Devices Society 7: 1129-1132.
Khairulaman, F.L., Yap, C.C. & Jumali,
M.H.H. 2021. Improved performance of inverted type organic
solar cell using copper iodide-doped P3HT:PCBM as active layer for low light application. Materials Letters 283:
128827.
Khairulaman, F.L., Yap, C.C., Jumali,
M.H.H. & Issa, N.A. 2022. Optimization of CuI-doped
P3HT:PCBM layers in inverted-type organic solar cells
for indoor light applications. Sains Malaysiana 51(12): 4059-4069.
Li, B., Hou, B. & Amaratunga, G.A.J. 2021. Indoor photovoltaics, The Next Big Trend in
solution-processed solar cells. InfoMat 3:
445-459.
Lim, E. L., Yap, C. C., Jumali, M. H. H. & Khairulaman,
F. L. 2019. Solution-dispersed copper iodide anode buffer layer gives P3HT:PCBM-based organic solar cells an efficiency boost. Journal
of Materials Science: Materials in Electronics 30(3): 2726–2731.
Liu, J., Cui, Y., Zu, Y., An,
C., Xu, B., Yao, H., Zhang, S. & Hou, J. 2020. Organic photovoltaic cells
for low light applications offering new scope and orientation. Organic
Electronics 85: 105798.
Ma, L-K., Chen, Y., Chow, P.C.Y., Zhang, G., Huang, J.,
Ma, C., Zhang, J., Yin, H., Cheung, A.M.H., Wong, K.S., So, S.K. & Yan, H.
2020. High-efficiency indoor organic
photovoltaics with a band-aligned interlayer. Joule 4(7): 1486-1500.
Majumder, C., Rai, A. &
Bose, C. 2018. Performance optimization of bulk heterojunction organic solar
cell. Optik 157: 924-929.
Moustafa, E., Pallares, J.
& Marsal, L.F. 2023. Investigating the role of PM6:Y7 layer thickness on
optimizing non-fullerene organic solar cells performance through impedance
spectroscopy analysis. IEEE Journal of the Electron Devices Society 11:
642-649.
Park, S.Y., Li, Y., Kim, J.,
Lee, T.H., Walker, B., Woo, H.Y. & Kim, J.Y. 2018. Alkoxybenzothiadiazole-based
fullerene and nonfullerene polymer solar cells with
high shunt resistance for indoor photovoltaic applications. ACS Applied
Materials and Interfaces 10(4): 3885-3894.
Scholtz, L., Ladanyi, L. & Mullerova,
J. 2014. Influence of surface roughness
on optical characteristics of multilayer solar cells. Advances in Electrical
and Electronic Engineering 12(6): 631-638.
Shaban, M., Benghanem,
M., Almohammedi, A. & Rabia, M. 2021.
Optimization of the active layer P3HT:PCBM for organic
solar cell. Coatings 11(7): 863.
Shah, S.K., Khan, J., Ullah, I. & Khan, Y. 2017. Optimization of active-layer thickness, top electrode
and annealing temperature for polymeric solar cells. AIMS Materials Science 4(3): 789-799.
Sharma, N., Gupta, S.K. & Singh Negi, C.M. 2019. Influence of active layer thickness on photovoltaic
performance of PTB7:PC70BM bulk heterojunction solar cell. Superlattices and
Microstructures 135: 106278.
Shin, S.C., Koh, C.W., Vincent,
P., Goo, J.S., Bae, J.H., Lee, J.J., Shin, C., Kim, H., Woo, H.Y. & Shim, J.W. 2019. Ultra-thick semi-crystalline photoactive donor
polymer for efficient indoor organic photovoltaics. Nano
Energy 58:
466-475.
Tadeson, G. & Sabat, R.G. 2019. Enhancement of the power conversion efficiency of
organic solar cells by surface patterning of azobenzene thin films. ACS
Omega 4(26): 21862-21872.
Taibi, I., Belghachi,
A. & Abid, H. 2016. Effect of trapping and temperature on the performance
of P3HT: PCBM organic solar cells. Optik 127(20): 8592-8599.
Ulum, M.S., Sesa, E., Kasman & Belcher, W. 2019. The effect of active layer thickness on P3HT:PCBM nanoparticulate organic photovoltaic device
performance. Journal of Physics: Conference Series 1242(1): 012025.
Wajidh, M.N., Yap, C.C., Issa, N.A., Lau, K.S., Tan, S.T., Jumali, M.H.H., Mustapha, M. & Chia, C.H. 2023. Photovoltaic performance improvement of inverted type organic solar cell by co-introducing
isopropanol and carbon quantum dots in photoactive layer. Journal of
Materials Science: Materials in Electronics 34: 1075.
Xu, B., Sai-Anand, G., Unni, G.E., Jeong, H.M., Kim,
J.S., Kim, S.W., Kwon, J.B., Bae, J.H. & Kang, S.W. 2019. Pyridine-based additive optimized P3HT:PC61BM
nanomorphology for improved performance and stability in polymer solar cells. Applied
Surface Science 484: 825-834.
Yan, N., Zhao, C., You, S.,
Zhang, Y. & Li, W. 2020. Recent progress of thin-film photovoltaics for
indoor application. Chinese Chemical Letters 31(3): 643-653.
Yu, H., Li, Y., Dong, Y. &
Huang, X. 2016. Fabrication and optimization of polymer solar cells based on
P3HT:PC70BM system. International Journal of Photoenergy 2016: 702-709.
Yun, T.W. & Sulaiman, K.
2011. Fabrication and morphological characterization of hybrid polymeric solar
cells based on P3HT and inorganic nanocrystal blends. Sains Malaysiana 40(1): 43-47.
Zang, Y., Xin, Q., Zhao, J.
& Lin, J. 2018. Effect of active layer thickness on the performance of
polymer solar cells based on a highly efficient donor material of PTB7-Th. Journal
of Physical Chemistry C 122(29): 16532-16539.
Zhang, Y., Duan, C. & Ding, L. 2020. Indoor organic photovoltaics. Science Bulletin 65: 2040-2042.
Zhou, X., Wu, H., Lin, B.,
Naveed, H.B., Xin, J., Bi, Z., Zhou, K., Ma, Y., Tang, Z., Zhao, C., Zheng, Q.,
Ma, Z. & Ma, W. 2021. Different morphology dependence for efficient indoor organic photovoltaics: The role of the leakage current and
recombination losses. ACS Applied Materials and Interfaces 13(37):
44604-44614.
*Corresponding author; email: ccyap@ukm.edu.my