Sains Malaysiana 53(10)(2024): 3511-3520

http://doi.org/10.17576/jsm-2024-5310-23

 

Enhancing Indoor Photovoltaic Performance of Inverted Type Organic Solar Cell by Controlling Photoactive Layer Solution Concentration

(Meningkatkan Prestasi Fotovoltaik Dalaman Sel Suria Organik Jenis Terbalik dengan Mengawal Kepekatan Larutan Lapisan Fotoaktif)

 

MOHAMED NAFEER WAJIDH1, NOUR ATTALLAH ISSA1, KAM SHENG LAU1, SIN TEE TAN2, CHIN HUA CHIA1, MUSLIZAINUN MUSTAPHA1, MOHAMMAD HAFIZUDDIN HJ JUMALI1 & CHI CHIN YAP1,*

 

1Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Received: 1 April 2024/Accepted: 27 August 2024

 

Abstract

With the development of various low-power indoor electronic devices, indoor photovoltaics, particularly organic solar cells (OSCs) have attracted a lot of interest in recent years. Increasing the light absorption and suppressing the leakage current are pivotal to improve the indoor photovoltaic performance of OSCs. In this study, the carbon quantum dots (CQDs)-incorporated photoactive layer solution concentration was varied to improve the photovoltaic performance under 1-sun and indoor white LED illumination. The photoactive layer was composed of (6,6)-phenyl-C61-butyric acid methyl ester) (PCBM) as the acceptor and poly(3-hexylthiophene) (P3HT) as the donor. The ZnO electron transport layer was deposited on fluorine-doped tin oxide (FTO)-coated glass substrates using a spin coating technique. The photoactive layers with different solution concentrations were spin coated on top of the ZnO layer. For device completion, silver anode was thermally evaporated. It is interesting to find that the optimum solution concentration obtained under white LED illumination is larger than that under 1-sun illumination. The maximum power conversion efficiency (PCE) of 0.95% was obtained under 1-sun illumination for device with the solution concentration of 36 mg/mL, whereas, under white LED illumination, the highest PCE of 3.59% was obtained for the device with solution concentration of 48 mg/mL.The discrepancy is ascribed to the higher light absorption of thicker photoactive layer and less significant charge recombination loss under weak light intensity. This study highlights the importance of using different optimization strategies to improve the photovoltaic performance of OSCs for outdoor and indoor applications.

 

Keywords: Carbon quantum dots; charge recombination; leakage current; light absorption; thickness

 

Abstrak

Dengan pembangunan pelbagai peranti elektronik dalaman berkuasa rendah, fotovoltaik dalaman, terutamanya sel suria organik (OSC) telah menarik banyak perhatian sejak beberapa tahun kebelakangan ini. Peningkatan penyerapan cahaya dan pengurangan kebocoran arus adalah penting untuk meningkatkan prestasi fotovoltaik dalaman OSC. Dalam kajian ini, kepekatan larutan lapisan fotoaktif yang digabungkan titik kuantum karbon (CQDs) telah diubah untuk meningkatkan prestasi fotovoltaik di bawah pencahayaan 1-matahari dan LED putih dalaman. Lapisan fotoaktif terdiri daripada (6,6)-fenil-C61 butrik asid metal ester (PCBM) sebagai penerima dan poli (3-heksilthiofena) (P3HT) sebagai penderma. Lapisan pengangkut elektron ZnO dimendapkan pada substrat kaca bersalut oksida timah terdop fluorin (FTO) menggunakan teknik salutan putaran. Lapisan fotoaktif dengan kepekatan larutan yang berbeza disalut di atas lapisan ZnO. Untuk menghasilkan peranti, anod perak disejat secara terma. Adalah menarik untuk mendapati bahawa kepekatan larutan optimum yang diperoleh di bawah pencahayaan LED putih adalah lebih besar daripada di bawah pencahayaan 1-matahari. Kecekapan penukaran kuasa (PCE) maksimum 0.95% diperoleh di bawah pencahayaan 1-matahari untuk peranti dengan kepekatan larutan 36 mg/mL, manakala, di bawah pencahayaan LED putih, PCE tertinggi sebanyak 3.59% diperoleh untuk peranti dengan kepekatan larutan 48 mg/mL. Percanggahan itu adalah disebabkan oleh penyerapan cahaya yang lebih tinggi bagi lapisan fotoaktif yang lebih tebal dan kehilangan penggabungan semula cas yang kurang ketara di bawah keamatan cahaya yang lemah. Kajian ini menonjolkan kepentingan menggunakan strategi pengoptimuman yang berbeza untuk meningkatkan prestasi fotovoltaik OSC untuk aplikasi luaran dan dalaman.

 

Kata kunci: Arus bocor; ketebalan; penggabungan semula cas; penyerapan cahaya; titik kuantum karbon

 

References

Alkhalayfeh, M.A., Abdul Aziz, A., Pakhuruddin, M.Z., Katubi, K.M.M. & Ahmadi, N. 2022. Recent development of indoor organic photovoltaics. Physica Status Solidi (A) Applications and Materials Science 219: 2100639.

Baek, W.H., Yang, H., Yoon, T.S., Kang, C.J., Lee, H.H. & Kim, Y.S. 2009. Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells. Solar Energy Materials and Solar Cells 93(8): 1263-1267.

Farooq, W., Khan, A.D., Khan, A.D. & Noman, M. 2020. Enhancing the power conversion efficiency of organic solar cells. Optik 208: 164093.

Hazar Apaydin, D., Esra Yildiz, D., Cirpan, A. & Toppare, L. 2013. Optimizing the organic solar cell efficiency: Role of the active layer thickness. Solar Energy Materials and Solar Cells 113: 100-105.

Ho, C.S., Huang, E.L., Hsu, W.C., Lee, C.S., Lai, Y.N., Yao, E.P. & Wang, C.W. 2012. Thermal effect on polymer solar cells with active layer concentrations of 3-5 wt%. Synthetic Metals 162(13-14): 1164-1168.

Issa, N.A., Yap, C.C., Tan, S.T., Hong, K.J., Lau, K.S., Khairulaman, F.L., Chia, C.H., Jumali, M.H.H. & Chong, K-K. 2022. Photovoltaic performance improvement of organic solar cell with ZnO nanorod arrays as electron transport layer using carbon quantum dots-incorporated photoactive layer. Optical Materials 132: 112876.

Jahandar, M., Kim, S. & Lim, D.C. 2021. Indoor organic photovoltaics for self-sustaining IoT devices: Progress, challenges and practicalization. ChemSusChem 14: 3449-3474.

Kang, M.H., Heo, D.K., Kim, D.H., Lee, M., Ryu, K., Kim, Y.H. & Yun, C. 2019. Fabrication of spray-coated semitransparent organic solar cells. IEEE Journal of the Electron Devices Society 7: 1129-1132.

Khairulaman, F.L., Yap, C.C. & Jumali, M.H.H. 2021. Improved performance of inverted type organic solar cell using copper iodide-doped P3HT:PCBM as active layer for low light application. Materials Letters 283: 128827.

Khairulaman, F.L., Yap, C.C., Jumali, M.H.H. & Issa, N.A. 2022. Optimization of CuI-doped P3HT:PCBM layers in inverted-type organic solar cells for indoor light applications. Sains Malaysiana 51(12): 4059-4069.

Li, B., Hou, B. & Amaratunga, G.A.J. 2021. Indoor photovoltaics, The Next Big Trend in solution-processed solar cells. InfoMat 3: 445-459.

Lim, E. L., Yap, C. C., Jumali, M. H. H. & Khairulaman, F. L. 2019. Solution-dispersed copper iodide anode buffer layer gives P3HT:PCBM-based organic solar cells an efficiency boost. Journal of Materials Science: Materials in Electronics 30(3): 2726–2731.

Liu, J., Cui, Y., Zu, Y., An, C., Xu, B., Yao, H., Zhang, S. & Hou, J. 2020. Organic photovoltaic cells for low light applications offering new scope and orientation. Organic Electronics 85: 105798.

Ma, L-K., Chen, Y., Chow, P.C.Y., Zhang, G., Huang, J., Ma, C., Zhang, J., Yin, H., Cheung, A.M.H., Wong, K.S., So, S.K. & Yan, H. 2020. High-efficiency indoor organic photovoltaics with a band-aligned interlayer. Joule 4(7): 1486-1500.

Majumder, C., Rai, A. & Bose, C. 2018. Performance optimization of bulk heterojunction organic solar cell. Optik 157: 924-929.

Moustafa, E., Pallares, J. & Marsal, L.F. 2023. Investigating the role of PM6:Y7 layer thickness on optimizing non-fullerene organic solar cells performance through impedance spectroscopy analysis. IEEE Journal of the Electron Devices Society 11: 642-649.

Park, S.Y., Li, Y., Kim, J., Lee, T.H., Walker, B., Woo, H.Y. & Kim, J.Y. 2018. Alkoxybenzothiadiazole-based fullerene and nonfullerene polymer solar cells with high shunt resistance for indoor photovoltaic applications. ACS Applied Materials and Interfaces 10(4): 3885-3894.

Scholtz, L., Ladanyi, L. & Mullerova, J. 2014. Influence of surface roughness on optical characteristics of multilayer solar cells. Advances in Electrical and Electronic Engineering 12(6): 631-638.

Shaban, M., Benghanem, M., Almohammedi, A. & Rabia, M. 2021. Optimization of the active layer P3HT:PCBM for organic solar cell. Coatings 11(7): 863.

Shah, S.K., Khan, J., Ullah, I. & Khan, Y. 2017. Optimization of active-layer thickness, top electrode and annealing temperature for polymeric solar cells. AIMS Materials Science 4(3): 789-799.

Sharma, N., Gupta, S.K. & Singh Negi, C.M. 2019. Influence of active layer thickness on photovoltaic performance of PTB7:PC70BM bulk heterojunction solar cell. Superlattices and Microstructures 135: 106278.

Shin, S.C., Koh, C.W., Vincent, P., Goo, J.S., Bae, J.H., Lee, J.J., Shin, C., Kim, H., Woo, H.Y. & Shim, J.W. 2019. Ultra-thick semi-crystalline photoactive donor polymer for efficient indoor organic photovoltaics. Nano Energy 58: 466-475.

Tadeson, G. & Sabat, R.G. 2019. Enhancement of the power conversion efficiency of organic solar cells by surface patterning of azobenzene thin films. ACS Omega 4(26): 21862-21872.

Taibi, I., Belghachi, A. & Abid, H. 2016. Effect of trapping and temperature on the performance of P3HT: PCBM organic solar cells. Optik 127(20): 8592-8599.

Ulum, M.S., Sesa, E., Kasman & Belcher, W. 2019. The effect of active layer thickness on P3HT:PCBM nanoparticulate organic photovoltaic device performance. Journal of Physics: Conference Series 1242(1): 012025.

Wajidh, M.N., Yap, C.C., Issa, N.A., Lau, K.S., Tan, S.T., Jumali, M.H.H., Mustapha, M. & Chia, C.H. 2023. Photovoltaic performance improvement of inverted type organic solar cell by co-introducing isopropanol and carbon quantum dots in photoactive layer. Journal of Materials Science: Materials in Electronics 34: 1075.

Xu, B., Sai-Anand, G., Unni, G.E., Jeong, H.M., Kim, J.S., Kim, S.W., Kwon, J.B., Bae, J.H. & Kang, S.W. 2019. Pyridine-based additive optimized P3HT:PC61BM nanomorphology for improved performance and stability in polymer solar cells. Applied Surface Science 484: 825-834.

Yan, N., Zhao, C., You, S., Zhang, Y. & Li, W. 2020. Recent progress of thin-film photovoltaics for indoor application. Chinese Chemical Letters 31(3): 643-653.

Yu, H., Li, Y., Dong, Y. & Huang, X. 2016. Fabrication and optimization of polymer solar cells based on P3HT:PC70BM system. International Journal of Photoenergy 2016: 702-709.

Yun, T.W. & Sulaiman, K. 2011. Fabrication and morphological characterization of hybrid polymeric solar cells based on P3HT and inorganic nanocrystal blends. Sains Malaysiana 40(1): 43-47.

Zang, Y., Xin, Q., Zhao, J. & Lin, J. 2018. Effect of active layer thickness on the performance of polymer solar cells based on a highly efficient donor material of PTB7-Th. Journal of Physical Chemistry C 122(29): 16532-16539.

Zhang, Y., Duan, C. & Ding, L. 2020. Indoor organic photovoltaics. Science Bulletin 65: 2040-2042.

Zhou, X., Wu, H., Lin, B., Naveed, H.B., Xin, J., Bi, Z., Zhou, K., Ma, Y., Tang, Z., Zhao, C., Zheng, Q., Ma, Z. & Ma, W. 2021. Different morphology dependence for efficient indoor organic photovoltaics: The role of the leakage current and recombination losses. ACS Applied Materials and Interfaces 13(37): 44604-44614.

 

*Corresponding author; email: ccyap@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next